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The ‘whistler nozzle’ is a simple device which can induce jet self-excitations of 
controllable amplitudes and frequencies and appears highly promising for many 
applications involving turbulent transport, combustion and aerodynamic noise. This 
paper documents the characteristics of this curious phenomenon for different values 
of the controlling parameters and explains the phenomenon. It is shown that the 
whistler excitation results from the coupling of two independent resonance mecha- 
nisms : shear-layer tone resulting from the impingement of the pipe-exit shear layer 
on the collar lip, and organ-pipe resonance of the pipe nozzle. The crucial role of the 
shear-layer tone in driving the organ-pipe resonance is proven by reproducing the 
event in pipe-ring and pipe-hole configurations in the absence of the collar. It is also 
shown that this phenomenon is strongest when the self-excitation frequency matches 
the ‘preferred mode ’ of the jet. 

The ‘ whistler-nozzle ’ phenomenon occurs for both laminar and turbulent initial 
boundary layers; the excitation can be induced without the pipe nozzle (say, by ring 
or hole tone) when the exit flow is laminar but not when i t  is turbulent. Unlike the 
shear-layer tone and jet tone phenomena, where successive stages overlap, adjacent 
stages of the whistler-nozzle excitation are separated by ‘dead zones’ where the 
conditions for both resonance mechanisms cannot be simultaneously met. Also, unlike 
the shear-layer and jet tones, the whistler frequency cannot be varied continuously 
by changing the speed. Since the phenomenon is the coupling of two resonance 
mechanisms, the frequency data appear to defy a simple nondimensional represen- 
tation for the entire range of its operation. Reasonable collapse of data is achieved, 
however, when the exit momentum thickness is used as a lengthscale, thus 
emphasizing the role of the shear-layer tone in the phenomenon. 

1. Introduction 
I n  an attempt to explore turbulence augmentation and suppression as well as the 

role of the large-scale coherent structures, and their interactions like tearing and 
pairing, in jet noise and mixing, we were interested in methods of inducing controlled 
excitations in the jet. The ‘whistler nozzle ’ presented itself as an attractive possibility 
because of its amazingly simple configuration, requirement of no external power, and 
ability to induce self-sustained excitation of controllahle amplitudes and frequencies 
over wide ranges. 

The device consists of a round tailpipe attached to the downstream end of a jet 
nozzle and an axisymmetric collar sliding over the pipe (figure I n ) .  As the collar is 
pulled downstream (i.e. the collar length IJ, projecting beyond the pipe is increased), 
a loud pure tone abruptly appears; (the tone is audible in air a t  velocities as low as 
15 m s-l). This is called the first stage. With increasing L,. the tone increases in 
amplitude, reaches a maximum, decreases and then disappears. With a further 
increase in L,, the tone reappears. This is the second stage, and so on. The tone 
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(d ) 

FIGURE 1. Schematics of different experimental configurations : (a )  pipecollar; ( b )  pipe-ring; (c) 
pipe-hole : ( d )  transverse entrainment a t  lip; (P) nearly parallel entrainment a t  lip. All dimensions 
are in cm. 

frequency and amp1it)uda depend on the pipe-nozzle length L,, collar length L,, step 
height h (i.c. the difference between the inner radii of the nozzle and the collar), jet 
exit speed U,, and jet diameter D. 

Hill & Greerie (1977) appear to  be t,he first to have discovered whistler-nozzle 
excitation, but they were unable to explain the phenomenon or find any relationship 
between the cont>rolling parameters. The motivation for the present study was to  
document t'he whistler-nozzle behaviour as a function of the controlling parameters, 
t,o explain the phenomenon and to validate the explanation via additional experiments 
in modified configurations (figures 1 h ,  c )  without the collar. The phenomenon was 
explored in low-speed axisynimetric air jet facilities available in our laboratory. The 
effects of the self-sust>ained excitation on the axisymmetric free jet emerging from 
the whistler nozzle have been discussed previously (see Hasan & Hussain 1982, 
hereinafter referenced as HH). Measurements up to 60 diameters showed that the 
whistler-nozzle excitation produces a large increase in the turbulence intensity in the 
near field of tfhe jet, while i t  increases the spread and decay rate for the entire x-range 
of measurement. For furt>her dckails see HH, which complements,the results reported 
here. 

The shear-layer tone phenoinenon 

If an object intercepts a laminar free shem layer, the shear layer can be set into 
oscillation, depending on the speed .Ye and the distance b of the object from the lip. 
The oscillation can produce discrete audible tones like the jet tone a t  even fairly low 
speeds, especially with a sharp edge. As h is increased from zero, a tone abrupt.ly 
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appears, and the frequency of the tone decreases with increasing 6 .  With further 
increase in b, the tone jumps back to a higher frequency. The average frequency 
remains the same a t  successive stages and is the instability frequency of the shear 
layer stabilized by feedback from the impinging edge. The frequencies in the different 
stages show collapse when non-dimensionalized by U, and the exit momentum 
thickness 8,. For further details, see Hussain & Zaman (1978, hereinafter referenced 
as HZ). 

2. Apparatus and procedure 
The experiments have been carried out in two axisymmetric air-jet facilities with 

nozzle diameters D = 2.54 and 7.62 cm. The 2.54 ern jet facility has been described 
by Zaman & Hussain (1980). The D = 2.54 ern pipe is attached to the settling 
chamber via an ASME nozzle (see HH). Data with the 7.62 cm nozzle were obtained 
in a large jet of 27 cm diameter. The transition to the D = 7.62 cm pipe occurs 
through an ASME nozzle. Additional details of the facility were given by Husain 
& Hussain (1979). 

The centreline longitudinal turbulence intensity a t  the inlet end of the pipe is about 
0.2 % for each facility. For the 2.54 cm jet, data were taken with six different values 
of L, (7.62, 15.24, 30.48, 45.72, 60.96, and 91.44 cm) and two values of h (0.3175 and 
0.635 cm). Unless otherwise stated, data presented for the 2.54 cm nozzle are for 
ITe = 36 m s-l corresponding to the jet Reynolds number Re,  ( = U ,  D / v )  of 6.2 x lo4. 
For D = 7.62 cm, data were taken with two values of L, (30.48 and 60.96 em) at U, 
values of 36, 45 and 60 m s-l. The corresponding values of Re, were 1.85 x lo5, 
2.3 x lo5 and 3.1 x lo5 respectively. For D = 7.62 cm, only one step height h 
( =  0.635 cm) was investigated. 

A standard tungsten hot wire of 40 pm diameter, operated a t  an overheat ratio 
of 0.4 by a linearized (DISA) constant-temperature anemometer, was used to obtain 
the data. Most of the data were obtained with a backlash-free traversing mechanism 
operated by stepping motors, which were controlled on-line by the laboratory 
computer (HP2000S). The frequency spectra were obtained with a real-time spectrum 
analyzer (Spectrascope model SD335). The phase of the disturbance signal was 
measured with a PAR lock-in amplifier; the reference signal was obtained from the 
flow by bandpassing the velocity signal in the near field of the excited jet. 

Note that the origin of the coordinates is located at the pipe-exit centre ; x increases 
in the downstream direction and y increases radially. 

3. Results and discussion 
3.1. General characteristics 

For the 2.54 ern nozzle, unless otherwise specified, data for two L, values represent- 
ing two distinctly different initial conditions (i.e. flow characteristics a t  the pipe 
exit) will be presented in this paper. These are, first, L, = 15.24 em, which has a 
laminar exit boundary layer, and, secondly, L, = 30.48 cm, which has a trans- 
itional exit boundary layer. For D = 2.54 em, data for longer pipes having turbulent 
exit boundary layers are not included because all the 7.62 ern diameter pipes have 
turbulent exit boundary layers. 

Even though a large number of measures can be used to define the initial 
condition, the mean velocity and longitudinal fluctuation intensity profiles and the 
u-spectrum in thc exit boundary layer can be regarded as adequate identifiers of the 
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Ue (m s-l) 

36 

36 
60 
60 

L, (em) 
15.24 
15.24 
30.48 
30.48 
60.96 
60.96 

L, (em) 

15.24 
15.24 
15.24 
30.48 
30.48 
30.48 
30.48 
60.96 
60.96 
30.48 
30.48 
60.96 

(a )  

h (em) Lcmin (cm) 
0.3175 0.381 
0.635 0.762 
0.3175 0.66 
0.635 1.016 
0.3175 0.8128 
0.635 1.2192 

(b  1 

D (em) 

2.54 
2.54 
2.54 
2.54 
2.54 
2.54 
2.54 
2.54 
2.54 
7.62 
7.62 
7.62 

h(em) 
0.31 75 
0.3175 
0.635 

0.3175 
0.3175 
0.635 
0.635 
0.3175 
0.635 
0.635 
0.635 
0.635 

L c  m i d o e  

17.47 
34.95 
15.64 
24.08 

8.02 
12.02 

&( = 2) 
32 
14 
14 
28 
16 
31 
15 
37 
32 
10 
12 
14 

Stage 

I 
I1 
I1 
I 
I1 
I 
I1 
I1 
I1 
I 

I1 
I 

TABLE 1. (a) Lemi, values of the whistler nozzle for U ,  = 36 m s-l, D = 2.54 cm 
(b) Approximate values of & for whistler-nozzle excitation. 

initial condition. The initial conditions can be classified into four groups: laminar, 
nominally laminar, highly disturbed and fully developed turbulent (for details see 
Hussain 1981). Both laminar and nominally laminar cases, identified by the 
agreement of the mean velocity profile with the Blasius profile, are grouped together 
in this study and termed 'laminar' for the sake of simplicity. For initially turbulent 
boundary-layer cases, the mean velocity profile had the characteristic logarithmic and 
wake regions in the universal (U+, y+) coordinates, the wake strength agreed with that 
expected for the corresponding value of Reo (Coles 1962), the longitudinal velocity 
fluctuation intensity profile agreed with that of the flat plate, and the longitudinal 
velocity spectrum $,(f) was broadband (typically over the frequency range 0-4 kHz) 
without any spectral peaks. 

Based on exploratory tests, the whistler-nozzle phenomenon was inferred by us to 
be an organ-pipe resonance of the pipe nozzle triggered by the shear-layer tone, which 
is produced by the impingement of the shear layer from the pipe exit on the collar 
lip. Detailed data discussed in the following further affirm our explanation. 

( a )  Minimum collar length 

If the whistler phenomenon involves a shear-layer tone, then there should be a 
minimum collar length LCmi, below which no excitation will take place. This is typical 
of the shear-layer tone and the jet tone phenomena (HZ; Karamcheti et al. 1969; 
Rockwell & Naudascher 1979). The LCmin value depends on Lp as well as h. Table 
1 ( a )  shows the values of LCmin for a few cases. With higher values of h, LCmin 
increases, since the collar has to  be longer in order for its lip to  intercept the shear 
layer and thus induce the shear-layer tone via feedback. Note that,  for the laminar 
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-- 
FIGURE 2. Longitudinal velocity .ii(t)-signal traces at the pipe-exit centreline for U ,  = 36 m s-l 

and h = 0.3175 cm. Inserts denote L,(cm), f(Hz) and stage respectively. 

case (Lp = 15.24 cm), the value of LCmi, is proportional to  h. At a lower frequency 
(and hence longer wavelength), the shear-layer roll-up length should be longer and, 
thus, the length required for vortex impingement and feedback to sustain the 
shear-layer tone should be greater also. Since the excitation frequency decreases with 
increasing L,, higher L, gives higher LCmi, (table 1 a) .  

(6) Nature of the excitation 

Figure 2 shows hot-wire traces at the pipe-exit centreline for a few representative 
excitation cases covering different stages and L, values for the 2.54 cm nozzle. The 
vertical and the horizontal scales for all the traces are identical. For each L,, the trace 
corresponds to  the value of L, that produces the maximum excitation amplitude 
&/Ue a t  the pipe-exit centreline. It is clear from figure 2 that the whistler nozzle 
induces a strong, stable sinusoidal surging of the flow for both laminar 
(L, < 15.24 cm) and turbulent (L, > 30.48 em) boundary layers at the pipe exit. I n  
the turbulent case (L, = 45.72 cm), only the exit boundary layer is turbulent, but 
the core flow a t  the pipe exit is non-turbulent. Larger L, values, in which the pipe 
exit flow is turbulent over the entire cross-section, also produce stable sinusoidal 
surging due to this self-excitation. It is apparent from the traces that the frequency 
decreases with increasing L,, the second-stage frequency is somewhat lower than that 
in the first stage for a given U, and L, (explained later), the second-stage amplitude 
is lower than that in the first stage, and the peak excitation amplitude in the first 
stage is the largest for L, = 30.48 cm and decreases for larger or smaller L,. 
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x (cm) 
FIGURE 3. Longitudinal fluctuation intensity (u') distribution inside the pipe along the centreline 

for the first stage, f = 244 Hz, D = 7.62 cm, L, = 60.96 cm and U,  = 45 m s-l. 

(c) Organ-pipe excitation 

Even though a monotonic decrease of the self-excitation frequency f with increasing 
L, suggests organ-pipe resonance of the nozzle, i t  was considered important to obtain 
direct evidence of this resonance. The u' distribution inside the pipe along the 
centreline a t  U, = 45 m s-l is shown in figure 3 for a halfwave mode in the first stage 
of excitation. The wavelength of a fullwave mode was found to  be slightly larger than 
half of the halfwave mode. This is not unexpected, because the effective lengths for 
the two modes are likely to be different and should include corrections due to both 
the collar length L, (Hasan & Hussain 1979) and the pipe diameter D (Kinsler & Frey 
1962, p. 201). Data in figure 3 corresponds to the condition for which uL/U, is the 
maximum. The vertical scale is logarithmic in order to accommodate large variations 
of the amplitude. 

( d )  Axial evolution of the fundamental 

The axial evolution of fundamental amplitude uf on the centreline for a number 
of excitation situations involving different stages is shown in figures 4(a, b ) ;  x is 
non-dimensionalized by the jet diameter in figure 4 (a )  and by the corresponding 
acoustic wavelength A, in figure 4(b). I n  order to provide a meaningful basis for 
comparison between different cases, all data in figure 4 are for a fixed excitation 
amplitude of 3 yo, achieved by adjusting L, (see later). The collar-exit location 
for each curve is identified by a vertical hatched line in figure 4 ( a ) .  Note that the 
data for L, = 60.96 cm) (U = 2.54 cm) are also included. The centreline variation of 
u; depends on the relative contributions of the hydrodynamic (instability) wave and 
the acoustic wave. For an instability wave-dominated case, the axial distribution of 
uf should be initially exponential. The u; distribuaion is altered significantly from 
exponential when the contribution of the acoustic wave becomes comparable to or 
larger than that of the instability wave. This has been demonstrated by Rockwell 
& Schachenmann (1982, hereinafter referenced as RS) by using a one-dimensional 
model for an impinging jet on a cavity. Which form of oscillation will occur for a given 
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FIGURE 4. (a )  Streamwise distribution of ui(x /D)  for D = 2.54 cm, 17, = 36 m s-l, h = 0.3175 cm, 
u;/U, = 3%. The pipe lengths (cm), first-stage (open symbol) and second-stage (solid symbol) 
frequencies (Hz) are 0, 15.24, 924, 820; A, 30.48, 480, 476; 0, 60.96, 536, 516. ( b )  The data of (a) 
as a function of x/Aa; symbols as in ( a ) .  
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self-sustained resonance condition is intimately connected with the ' quality factor ' 
Q, which is directly related to the damping of the acoustic mode of the system. 
Typically, Q for a system is defined as Q = w,/Aw,  where w,  is the resonance 
frequency (representing the maximum gain), and Aw is the half-power bandwidth. 
For the whistler nozzle, the excitation amplitude varies with the collar length L,, 
which also changes the frequency of excitation. Thus, from a plot showing the 
variation of u; with L, (hence frequency), one should be able to calculate a crude 
Q-factor for the whistler nozzle. The estimated values of Q for different whistler-nozzle 
parameters are given in table 1 (b) .  A small value of Q should represent the case when 
the instability wave dominates the acoustic wave (see also RS). The high values of 
Q (in table 1 ( b ) )  for the whistler nozzle suggest the presence of a strong acoustic wave. 

In  figure 4a, the amplitude uf drops sharply for all cases between x / D  = 0 and 
x / D  = 0.8 to a minimum value and then rises again. This drop in u; is predicted by 
RS's model for the case when the amplitudes of the acoustic and instability waves 
are comparable. The near-field dip was observed previously by Pfizenmaier (1973) 
and Hussain & Zaman (1975), even though this dip was surprisingly absent in the 
data of Crow & Champagne (1971). Note that the dip in u; distribution for different 
cases occurs a t  nearly the same location ( x l h ,  x 0.016) when plotted against x/A, 
(figure 4 b ) .  I n  figure 4(b), the distance between the first and second dips gives an 
approximate measure of the disturbance wavelength A. Based on this wavelength, 
the relationship between collar length and disturbance wavelength was found to be 
L,/h = n - c ,  where n is the stage of excitation and c = 0.5. The value of c varies 
between different impinging flow geometries. A summary of the L,/A values for 
different impinging shear layers is given by Ziada & Rockwell (1982). 

( e )  Dependence on velocity 
Attempts were made to  document the variation of the whistler excitation 

frequency with velocity. For a given L, as the velocity was increased slowly, the 
whistler excitation appeared only for a small velocity range after which the tone 
disappeared with a further increase in Ue.  For a few cases, the whistler excitation 
could be triggered again a t  a higher velocity. The variation of the excitation 
frequency with L, is due to the fact that  the effective length of the pipe-collar 
combination changes with L,. However, for a fixed L,, when U,  is changed, the 
corresponding shear-layer tone frequency does not match one of the organ-pipe mode 
frequencies. That is why, unlike the jet tone and shear-layer tone phenomena, 
whistler-nozzle excitation cannot be obtained for a fixed L, a t  any arbitrary exit 
velocity. 

3.2. Frequency and amplitude variation with the collar length 
Perhaps the best demonstration of the underlying phenomenon in the whistler nozzle 
is the dependence of the excitation frequency f on L,. Since the phenomenon is the 
coupling of two resonance mechanisms, i.e. the organ-pipe resonance and the 
shear-layer tone, the frequency jumps must also depend on L,. The dependence of 
the excitation frequency and amplitude on L, are demonstrated for some represen- 
tative cases in figures 5 and 6. Figures 5 (a-c) show the variation off with L, ; figures 
6 (a+) show the corresponding amplitudes. Only those spectral components with 
amplitudes within 45 dB of the highest peak for each L, are included. 

(a )  Laminar and transitional initial conditions 
Figures 5(a) and 6 ( a )  cover data for L, = 16.24 cm which has a laminar exit 

boundary layer. Figures 5(b) and 6(b) correspond to a transitional exit boundary 
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layer. Consider figures 5a and 6a  for h = 0.3175 cm first. Two modes one halfwave 
centred a t  f % 900 Hz and one fullwave centred a t  f % 1800 Hz, are excited simul- 
taneously for L, > Lcmin. With increasing L,, f decreases. Note that the halfwave 
mode is considerably stronger (by about 25 dB) than the fullwave mode and occurs 
for a larger range of L,. The second stage appears for L, > 2.2 cm and lasts for a much 
longer L, range than the first stage. Note that the amplitudes near the peak in both 
stages are nearly equal. Both the halfwave and fullwave mode frequencies in the 
second stage are lower than those in the first stage. This is to  be expected because 
L, adds an effective length to  L,; the effective length is larger for the second stage 
than for the first stage. Based on our experimental data, the following relationship 
was obtained (Hasan & Hussain 1979) to  predict the whistler frequency f :  

where a,, is the acoustic speed, n ( = 4, 1, $, . . .) denotes the mode a n d j  ( = 1 , 2 , 3 ,  . . . ) the 
stage; our data showed that C, = 1.65 and C,  = 0.7. Equation (1) is essentially the 
organ-pipe equation with end corrections. The curve representing (1) is not shown 
in figure 5 for clarity. When external excitation was applied in the absence of the 
flow, it was not possible to differentiate between the pipe resonance and the settling- 
chamber resonance. 

For the larger h ( = 0.635 cm), there is no dominant first stage, nor any fullwave 
mode in the second stage (figure 5a) .  Some humps in the ii-spectra were detected for 
values of L, corresponding to the first stage, but they were discarded on the basis 
of the amplitude criterion mentioned earlier. I n  this region, the &signal trace did not 
show any change from the unexcited situation, nor was there any audible tone. For 
h = 0.3175 cm in the range 1.3 cm < L, < 2 cm, one single spectral peak at 
approximately the fullwave mode frequency occurs. This intermediate stage, which 
does not follow the patterns in stages I and 11, has a frequency about 10 yo lower than 
expected. The variation of u' along the length of the pipe nozzle for this intermediate 
stage suggested a very weak fullwave mode. Note that, with increasing L, for any 
mode or stage, the increase in amplitude a t  the beginning of a stage is more abrupt 
than the decrease a t  the end of the stage (figure 6). 

In  each of the stages, f decreases with a progressive increase of L,, as to be expected 
from the characteristics of the shear-layer tone (HZ) or other self-sustained oscillation 
phenomena. This suggests that the same basic mechanism which is responsible for 
the shear-layer tone or the jet tone triggers and sustains the whistler-nozzle 
oscillation. 

Figures 5 b and 6 b show data for the D = 2.54 cm pipe nozzle of L, = 30.48 em. For 
both h = 0.3175 and 0.635 cm, there are two distinct stages of the halfwave mode 
accompanied by a weaker fullwave mode (figure 5 b ) .  Between stages I and 11, there is 
a fullwave mode which corresponds to a shear-layer tone stage but not a whistler-nozzle 
stage. The amplitudes in these shear-layer tone stages are much lower (15-30 dB) than 
the amplitudes representing a whistler stage (figure 6 6 ) .  Note that in figure 6 b data 
for only h = 0.3175 cm have been presented. 

(b)  Turbulent initial condition 

Figures 5 c  and 6c  show the frequency and amplitude as functions of L, for 
D = 7.62 cm a t  Ue = 36 m s-l and 60 m s-l with a fully developed turbulent 
boundary layer at the exit a t  either speed. I n  figure 6c, consider the Ue = 60 m s-l 
case first. There are two stages of excitation: one is centred a t  L, w 2.6 cm and the 
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FIGURE 6. (a )  Variation of amplitude at the pipe exit corresponding to the data in figure 5(a). ( b )  
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amplitude a t  the pipe exit corresponding to data in figure 5 ( c ) .  
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other a t  L, x 9 cm. Each of these stages is associated with both a halfwave mode and a 
fullwave mode. Note that, for either the fullwave or the halfwave mode, the frequen- 
cies in the two stages are nearly equal, the midfrequency being slightly lower in the 
second stage than in the first stage (figure 5 c ) .  This is analogous to the shear- 
layer tone phenomenon (see HZ).The second fullwave mode a t  U ,  = 60 m s-l (centred 
a t  L, z 4.5 cm) is a shear-layer tone stage (St, - 0.01) which is not supported by the 
pipe resonance and thus is not associated with a halfwave mode. At U, = 36 m s-l, 
there is only one stage of whistler excitation, consisting of simultaneous halfwave 
and fullwave modes. Note that (for Ue = 60 m s-l) there is no whistler excitation in 
the range 5 ern < I,, < 7 cm. 

The shear-layer tone-type behaviour of the whistler nozzle suggests that the shear 
layer from the pipe lip rolls up into discrete vortical structures. Detailed profile data 
show that the pipe-exit boundary layer is fully turbulent for either value of IT, when 
D = 7.62 em. Thus, in these cases, the initially fully turbulent shear layer also rolls 
up into vortical structures. (The roll-up and organization of initially full turbulent 
shear layers into discrete vortical structures was first demonstrated by Clark & 
Hussain (1979) via visualization and cin6 films. Recently, the roll-up of an initially 
fully turbulent plane mixing layer has been demonstrated and the resulting coherent 
structure details have been educed by Hussain & Zaman (1982).) This shear-layer tone 
for a turbulent boundary layer, though much weaker than that for an initially 
laminar shear layer, is accentuated by the pipe-nozzle resonance if one of its organ-pipe 
modes matches the shear-layer tone frequency. 

In  view of the fact that  the roll-up of the initially turbulent shear layer into discrete 
coherent structures will have large dispersion in formation distance, strength, etc., 
the start of the whistler excitation tone is likely to be less abrupt when the layer is 
initially turbulent than when initially laminar. Data in figure S(c,), when compared 
with those in figures 6 ( a ,  b ) ,  show consistency with this notion. Furthermore, the 
vortices in the initially turbulent cases are likely to induce weaker feedback and 
consequently weaker whistler excitation, not only because of diffuse vorticity but also 
because of phase and amplitude jitter from one structure to another. As figure 6c 
shows, the peak amplitudes are weaker than in the cases when the shear layer is 
initially laminar; this was found to  be always true. For U ,  = 36 m s-l, the turbulent 
case amplitude is 10 dB lower than that in the laminar case. Note that the rise in 
amplitude with increasing L, is sharper for shorter L,, because a t  shorter L, the 
rolled-up vortices are stronger (owing to higher coherent vorticity) and thus capable 
of producing stronger feedback. 

From the data of figure 5 i t  can be summarized that the frequency behaviour of 
the whistler nozzle is similar to the shear-layer tone (f decreases with increasing L,). 
But the range over which the frequency changes in any stage is very limited, since 
the requirement for shear-layer tone and organ-pipe resonance must be satisfied 
simultaneously. It is found that the shear-layer tone frequency is always a multiple 
of the fundamental frequency having an St, value in the range (0.34.6) of the 
‘preferred mode’ of the jet (Hussain & Zaman 1981). 

(c) Interstage gaps 

A difference between the whistler nozzle and the shear-layer tone excitations can 
be identified from figures 5 (a-c). In  the shear-layer tone phenomenon, there is always 
an excitation frequency for every value of the lipwedge distance within its range of 
operation; one stage always gives way to the next, typically with an overlap range. 
Since the whistler phenomenon is the coupling of two resonance mechanisms, 
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excitation will occur when the conditions for both resonances are satisfied simultan- 
eously. Clearly, there will be ranges of L, where conditions for both resonances cannot 
be satisfied. Because of this, there are interstage ranges of L, where whistler-nozzle 
excitation does not occur (see figures 5a-c). However, in these 'dead zones', the 
shear-layer tone should still occur in the region between the collar and pipe lips. 
However, compared with the tone induced by a sharp wedge (see HZ), the shear-layer 
tone will also be considerably weaker. 

3.3. Excitation amplitude at pipe exit 

The amplitude of whistler excitation depends on lTe, L,, L, and h. For a given 
L,, h and U,, the amplitude can be controlled primarily by changing the collar 
length L,. Figure 7 gives one typical example of the variation of excitation amplitude 
uL/U, (at the pipe-exit centreline) as a function of L,; I and I1 denote the first and 
second stages. The sensitivity of the amplitude to the step height h is also included in 
figure 7 .  Note that, when h is increased, the collar length must also increase in order 
for the shear layer to impinge on the collar lip. The vortices get correspondingly more 
diffuse and the tone amplitude is weaker and its rise is less abrupt. Note that, in order 
to produce a given amplitude of excitation, i t  is preferable to choose an L, corre- 
sponding to the right-hand side of a stage because the change in amplitude is more 
gradual and less sensitive than on the left-hand side. Figure 7 shows that the whistler 
nozzle can be used to introduce controlled excitation of selectable amplitudes by 
appropriately choosing L,. It has been shown that the response of the jet to con- 
trolled self-excitation (see HH) is similar to that of imposed excitations (Zaman & 
Hussain 1980 ; Kibens 1980). 

3.4. The shear-layer characteristics for  the whistler-nozzle excitation 
The evolution of whistler-tone amplitude and phase profiles are shown in figure 8 for 
the first-stage excitation, for L, = 30.48 cm, D = 2.54 cm, L, = 1.02 cm and 
u;, U, = 12 %. The measurements were made a t  three different x-stations : two inside 
the collar ( x  = 0.254 and x = 0.635 cm) and one outside ( x  = 2.54 cm). The whistler 
fundamental tone phase and amplitude profiles are given in figures 8 (a ,  b )  respectively. 
Because of the backflow problem, the momentum thickness 01, for the data in figures 
8 ( a ,  b ) ,  was calculated as follows: 

That is, the integration was terminated a t  the y-location where the mean velocity 
was 0.25U,. 

- 1 
(figure 8a) ,  then increases to a peak and suddenly drops by about 7c near 
( ~ - T J , , ~ ) / O ~  z 2. These profiles are in qualitative agreement with the shear-layer tone 
data (HZ). At each value of x, the radial location of the maximum phase gradient 
(d$/dy),,, coincides with the minimum of the tone amplitude uf (figure 8 b ) ,  
consistent with the prediction of linear spatial stability theory (Michalke 1965). Note 
that the locations of the uf peak and the minimum move towards the jet centre with 
increasing x. In  the shear-layer tone, the transverse location of the uf minimum was 
the same a t  different x. 

For the convenience of comparison of whistler-nozzle data with other experimental 
and theoretical data, the u; data for x = 0.254 cm are plotted in figure 8c in a different 
non-dimensional transverse coordinate. Also included in figure 8 c are Michalke's 

Inside the collar, the perturbation phase remains constant for (y-y,,5)/Ol 

15 
F L M  134 
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7 .  Variation of pipe-exit fluctuation intensity u;/Ue with L, for L, = 30.48 cm, 
Ue = 36 m 5-l and D = 2.54 cm: +, h = 0.3175 cm, A, h = 0.635 cm. 

inviscid theory (for laminar flow) and Rockwell’s (private communication) data for 
organized wave in an impinging turbulent jet. Each curve in figure 8 c  is identified 
with two Strouhal numbers, except for Michalke’s theoretical prediction. The first 
Strouhal number St,, is based on the exit momentum thickness and the second one 
is based on the local momentum thickness 8. Note that in the present case 8 was 
calculated as 

8 = ~ ~ ~ : ~ ~ ~ (  1 - g- dy, 

thus partly accounting for the St, values being lower than those in the cited 
references. 

Two different cases of Rockwell’s data are included. The first case represents the 
organized wave data for the oscillation dominated by the instability wave 
(St, = 0.025), and the second case represents the data where instability and acoustic 
waves have nearly equal amplitudes a t  separation (St, = 0.041). These two cases 
are included in order to permit comparison between similar situations. The general 
agreement of the whistler data with Michalke’s theory suggests that the inviscid 
parallel-flow stability theory may be adequate to describe the overall character of 
the whistler-tone amplitude distribution in the axisymmetric mixing layer. On the 
high-speed side away from the shear layer, the fundamental amplitude in the whistler 
tone is higher because of the surging of the core flow. The similarity between these 
and Rockwell’s data also suggests that a similar mechanism is at work here. 

3.5. Streamwise phase variation and wavelength 
The streamwise phase variation of the disturbance wave is necessary to deduce its 
phase velocity and wavelength, to understand the superposition of vorticity (i.e. 
hydrodynamic) and acoustic waves, and to see if the phase difference between the 
separation (x = 0) and impingement (x = L,) points are consistent with the ‘phase 
criterion ’. In the case of self-sustained oscillations, this criterion requires that the 
feedback from the impingement point should reach the separation point at the 
appropriate phase in order to reinforce and sustain the underlying instability 
phenomenon crucial for the flow self-excitation (see HZ). 

It is clear that, in order for a purely hydrodynamic wave to become resonant, an 
integral number of wavelengths must fit into the separation-impingement length, viz 
L, in the present case. This simply indicates that the net phase difference & between 



The whistler-nozzle phenomenon 445 

@ 
- 0  - 2n 

I I I -0.4 
-5 -3 -1  1 3 5 

cv - Y o . s ) / ~ *  

0, -Y 0.s)lB 

FIGURE 8. (a )  Phase profile across the shear layer for D = 2.54 cm, L, = 30.48 cm, f =  504 Hz, 
U,  = 36 m s-l: 1, z = 0.254 cm; A, 0.635 cm; 0 ,  2.54 cm. ( b )  Profile of u; across the shear layer 
corresponding to the data in (a).  (c) Amplitude profiles for disturbance tone: -, whistler (0.006, 
0.0135) ; ---------, Michalke’s theory (0.017) ; -*-.- , Rockwell (0.017, 0.025); -. .-. .-, 
Rockwell (0.0275, 0.041). 

separation and impingement points must be 2nn, where n is the number of 
wavelengths between x / L ,  = 0 and x / L ,  = 1. However, earlier theoretical models as 
well as experimental data indicate that & = 2n(n+A), where A is an empirical 
constant representing an additional distance as a fraction of a wavelength. This 
reduces the phase criterion to L,/h = n + A  (see later). 

I n  the case of jet-edge tone, Brown (1937) deduced from his smoke pictures that 
A x t. Curle (1953) and Powell (1961) also used the same value (i.e. A = t )  in their 

15-2 
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theoretical models of the slit-jet edgetone. For shear-layer tone, HZ found A z +, a 
value also found by Sarohia (1977) for self-excitation of a shear layer over a resonant 
cavity. Crighton & Innes (1981) predicted a value of A = for the shear-layer tone. 
On the other hand, the value of A was found to be zero in the self-excited flow studies 
by RS, Knisely & Rockwell (1981) and Ho & Nosseir (1981). Perhaps the value A = 1 
found by Ziada & Rockwell (1982) can be dismissed as an error in their identification 
of stages, so that their study also suggests A = 0. 

A number of factors can contribute to non-zero values of A :  viz. shear layer 
characteristics a t  impingement, flow geometry, disturbance phase profile and phase 
distortions. The phase criterion of A = 0 will be consistent only for an infinitesimally 
thin pendulating shear layer. The gradual spreading of the shear layer due to viscous 
diffusion requires consideration of the non-parallel effect. Furthermore, the assumption 
that the feedback is most stable at the instant when the vortex centre is a t  the wedge 
tip is true only if the vortex is irrotational; the finite radius of a viscous vortex must 
make A > 0. Also, the wavelength will vary in x due to non-parallel and nonlinear 
effects. If the shear layer is turbulent before impingement, the vortex size will be still 
larger, producing a larger value of A .  

The transverse displacement of the impingement edge also should contribute to 
A being non-zero. The disturbance phase is not constant across the shear layer. 
While, in a thin (inviscid) layer, there will be a 180° abrupt phase jump, the phase 
variation will be smoother in a viscous shear layer. The presence of a strong 
acoustic disturbance can further distort the phase profile (see RS). 

The geometrical considerations perhaps require that values of A should be 
compared only for similar geometries. Thus, while the slit-jet tone should have A > 0, 
the conflicting values of A found in different investigations in shear layers need 
explanation. Of the factors considered above, the key factor is the phase profile. The 
transverse phase gradient in the shear-layer tone at any x led HZ to recognize the 
importance of the transverse location for streamwise phase measurement. HZ 
measured d#/dx a t  the transverse location of maximum phase lead. RS found a ‘phase 
core’ in an axisymmetric impinging cavity flow and found A = 0 from measurement 
in this core, for an instability-wave-dominated excitation case. In  the present situa- 
tion where a strong acoustic wave is simultaneously present with the instability 
wave, the difference between #(x) data along the centreline and along the 
U/Uc  = 0.95 line clearly suggests that  the ‘phase-core’ region is small. 

In  general, we recommend the high-speed edge of the mixing layer, namely, the 
U / U c  = 0.95 line, for #(x) measurement, independent of whether a ‘phase core ’ exists 
or not. Since the phase measurement is sensitive to the disturbance amplitude, #(x) 
should ideally be measured a t  the location of maximum disturbance amplitude (see 
HZ). On the other hand, in order to avoid the ambiguity of #(x) data near regions 
of steep gradient in #(y), the measurement should be made away from the middle 
of the shear layer. Also, if the shear layer is turbulent, meaningful #(x) data can be 
taken only at the edge of the shear layer. Hence, the U / U ,  = 0.95 line is the optimum 
choice. It may be important to  note that HZ found the phase profiles $(y) nonsimilar 
a t  different x. 

The above discussion thus suggests that variations in A are to be expected between 
different experiments. Further investigations are necessary to relate definitively 
variations in A with various controlling factors. 

The streamwise variation of the phase of the u(t) signal along the centreline and 
along the high-speed edge, viz along the line corresponding to U / U c  = 0.95, are shown 
in figure 9 for a variety of whistler-nozzle excitation situations. All the data 
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FIGURE 9. Streamwise phase variation for D = 7.62 cm, L, = 30.48 cm along the centreline (open 
symbols) and along U / U ,  = 0.95 line (solid symbols). The frequency (Hz), stage and velocity (m s-l) 
are 0,  420, I,  45; V, 394, I,  60; A, 372.11, 60; fi, 366,II, 45. 

correspond to the fixed excitation amplitude uL/ Ue = 2 yo. Note that the phase 
distributions along the centreline (open symbols) and the UIU,  = 0.95 line (solid 
symbols) are not identical. In this figure, the pipe exit and collar exit are located at  
x/L, = 0 and x/L, = 1 respectively. The phase remains virtually constant inside the 
pipe (i.e. x/L, < 0), indicating the dominance of the acoustic wave there. Note the 
high streamwise phase gradients between x/L, = 0 and x/L, = 1, after which the 
phase distributions become nearly linear with x. Similar phase gradients were 
predicted by RS’s one-dimensional model for an impinging axisymmetric cavity flow, 
where the instability and acoustic waves were comparably dominant. Note that, in 
figure 9, the phase difference between stages I and I1 at the impingement point ranges 
between x and 1 . 5 7 ~  ; for a purely hydrodynamic oscillation, this value should be 2x. 

3.6. Phase velocity and h /A  relations 
Let us represent the disturbance wave as 

.ii = @(y) ei(azt-ot) + conjugate 

= @(y) eia(z-ct) +conjugate, (2) 

where a = ai+ia, and c = ci+ic, and w = ac is the circular frequency. The phase 
velocity is then given by = w/a , .  Assuming nearly parallel flow, if 4 denotes 
the phase of .ii, i t  is clear that a, = d$/dx = 2x/A. Thus, from the streamwise phase 
gradient, both the wavelength and the phase velocity V p h  can be inferred. The phase 
velocities calculated from the phase distributions of figure 9 are shown in figure 10. 
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FIGURE 10. Streamwise variation of vph. For symbols see figure 9. 

u, (m 9-l) f (Hz) 
60 434 

374 
416 
372 

45 392 
366 
244 

30 392 
242 
240 

TABLE 2. vph ant LJh data for D = 7.6- cm 

- Lc 
h 

0.1827 
0.891 
0.22 
0.894 
0.945 
1.06 
0.1866 
0.924 
0.185 
0.895 

Note that the phase velocity vph, which equals the acoustic speed within the pipe, 
decreases rapidly with increasing x and approaches an asymptotic value outside the 
collar. The rapid drop of the phase velocity with x in figure 10 should give an idea 
of the location from where onwards the hydrodynamic wave dominates the acoustic 
wave. Note that the phase velocity vph reaches constant values around 0.6Ue with 
increasing x .  These values are in general agreement with the data of KO & Davies 
(1971), Lau, Fisher & Fuchs (1972), Bradshaw, Ferris & Johnson (1964), Petersen 
(1978) and Hussain & Clark (1981). 

In order to estimate the relationship between L, and A,  the value of A within the 
collar would be more meaningful. However, because of the large variation of the phase 
velocity within the collar, it is not possible to have an accurate estimate of A within 
the collar. so, an estimate of the wavelength A in the region (x/L,  > 2 )  where ?)ph 
becomes nearly constant was made. Based on this A, the LJA values for different 
velocities and stages are listed in table 2; these values do not appear to support a 
simple relationship of the type L,/A = n + A ,  expected for self-sustained oscillation 
phenomena. However, if A is inferred from the distribution of tone amplitude within 
the collar (see figure 4 b ) ,  a relationship of the type L,/A = n + A  appears reasonable. 
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3.7. Flow visualization 
In an effort to demonstrate that the whistler-nozzle excitation is triggered when 
vortices in the shear layer within the collar interact with the collar lip, flow 
visualization was carried out by introducing TiC1, smoke upstream of the pipe nozzle. 
When the excitation is present, one would expect to see a vortex at  the collar exit 
especially when the pipe exit flow is laminar. The visualization was done for 
L, = 30.48 cm ( D  = 2.54 cm) at U, = 16 m s-l. Natural roll-up of vortices in the 
unexcited jet takes place at x / D  x 2 (figure 11 a) .  Figure 11 b shows the condition when 
whistler excitation is present. For both excited and unexcited conditions, the pipe 
exit location is shown by an arrow. Flow visualization showed that the shear layer 
rolls up sooner in x owing to the feedback effect during whistler excitation, as should 
be evident from comparison of figures 11 a and b. Similar efforts to visualize the flow 
with turbulent initial conditions failed to reveal any clear vortex structure. It was 
not considered worthwhile to visualize the flow within the collar by redesigning the 
facility with transparent pipes and collars. 

3.8. Non-dimensional representation of the whistler-nozzle phenomenon 
Non-dimensional relationships between the controlling parameters would be helpful 
in optimum choice of whistler-nozzle dimensions and prediction of its performance 
in various technological applications. Included among the controlling parameters are 
L,, L,, D ,  U ,  and h. Clearly, L, and L, are dominant parameters. Since L, depends 
on h, i t  may not be necessary to include h directly. If the whistler excitation is 
triggered by a shear-layer tone, which in turn must depend on the instability of the 
shear layer (HZ) downstream of the pipe nozzle, then the phenomenon must depend 
on the state of the boundary layer at  the pipe exit. A lengthscale of the boundary 
layer, say the momentum thickness Be,  must therefore be included. Based on our 
experiments with the shear-layer tone (HZ), it would appear that non-dimensional 
frequencies St,( = fL , /Ue)  and St,,( = f8,/Ue) would be important characteristic 
parameters of the whistler nozzle. When St, vs. L, was plotted, data did not collapse 
for different L, values. However, when the St, data were plotted against L,/8,, the 
data collapsed for both L, = 30.48 cm and L, = 15.24 cm (figure 12a); St, values 
based on the fullwave mode frequency are also shown in figure 12 (a). Note that the 
collapse of the data is comparatively better for the halfwave mode than for the 
fullwave mode. This collapse suggests that the initial momentum thickness 8, is an 
important parameter for the whistler phenomenon and emphasizes the role of the 
shear-layer tone in the phenomenon. 

The variation of St, with L,/8, is nearly linear; data for different stages fall 
essentially on the same line. This is not so for the shear-layer tone, the jet tone or 
other self-sustained oscillations. For the shear-layer tone (HZ) and the cavity flow 
(Sarohia 1977), St, varies almost linearly in each stage, but different stages are 
separated by vertical shifts. In figure 12a, the first and second stages are not 
separated and appear to fall on a single line. The nearly linear variation of St, 
indicates that, even though the shear-layer tone triggers the phenomenon, it is 
primarily an organ-pipe resonance. 

Equation (1) can be used to interpret the results in figure 12. If C,/j is neglected 
(i.e. because C,/j + L,/L,), and considering the fact that C,D -4 L,, (1) can be 
approximated as 
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(b 

FIGURE 11. Flow visualization for L, = 30.48 cm, D = 2.54 cm a t  = 16 m s-l; (a )  unexcited 
(L, = 0); (6) excited (L, + 0). The arrow indicates the location of the pipe exit. Flow is from 
right to left. 
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FIQURE 12. (a) Variation of St, with L,/B,; L, (crn) and step height (cm) are 0,  15.24, 0.3175; 
A, 15.24, 0.635; 0, 30.48, 0.3175; V, 30.48, 0.635. Open symbols denote halfwave mode and solid 
symbols denote fullwave model. (6) Variation of St,, with L,/t?,; symbols as in (a). 

where M is the Mach number. Note that (3) predicts a linear variation of St, with 
L,. Note that the collapse of St, data in figure 12(a) is much better in the first stage 
than in the second because the assumption C,/j 4 L,/L, is more appropriate in the 
first. From (3) one can conclude that the St,, vs. L,/O, data for different velocities 
and modes of resonance will not collapse. 

Figure 12 (b )  shows the data of figure 12 (a ) ,  plotted as St,, ( = fO,/U,) us. L,/O,. 
If St, us. LJO, were exactly linear, then #tee would be a constant. Data in figure 12 (b )  
show that in each stage Stee decreases with increasing L, - a characteristic of the 
shear-layer tone (HZ). However, unlike the shear-layer tone, the decrease in St,, with 
increasing L,/8, is quite gradual, decreasing from about 0.006 to about 0.0045 over 
the range 0 < &/Be  < 250. The gradual fall-off,of the St, values from linear variation 
with increasing L, in figure 12 ( a )  and the corresponding decreasing values of St,, in 
figure 1 2 ( b )  are to be expected, because increasing values of L, produce longer 
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effective lengths of the pipe nozzle and hence lower excitation frequencies. Because 
the phenomenon consists of two independent resonance mechanisms, and there are 
controlling parameters not included in St,,, i t  is not expected that St,, data will 
collapse. Even so, i t  is quite impressive that data for different controlling parameters 
fall in a narrow band. Note that the tendency for the shear-layer tone stages to fall 
into separate curves (see HZ) is smoothed by the organ-pipe resonance. The collapse 
of the data, when non-dimensionalized by O,, emphasizes the important role of the 
shear-layer tone phenomenon in whistler-nozzle excitation. 

3.9. Whistler excitation in p iper ing  an,d pipe-hole configurations 
Our explanation for the whistler-nozzle phenomenon was subjected to further 
scrutiny in ring- and hole-tone configurations. Even though the above data adequately 
characterize the whistler-nozzle behaviour as a function of the values of the 
controlling parameters, these data and their discussions in the foregoing establish well 
that while the device configuration, as well as the control of the excitation amplitude 
and frequency, is extremely simple, the phenomenon is not. The data support our 
explanation rather well, even though some peculiarities in the details remain 
unexplained. 

Two aspects of the whistler nozzle would negate total success of any simple 
explanation. Since the phenomenon is the confluence of two independent resonance 
mechanisms, i t  is not likely that a simple nondimensional relation can be valid for 
the entire range of its operation. Such a simple relationship does not necessarily 
include all controlling parameters ; the less-dominant parameters would produce 
additional deviations from the modelled simple relationship. The second aspect 
complicating a simple explanation is, of course, the collar. Because of the unavoidable 
recirculating region (downstream from the pipe exit) within the collar, the whistler 
tone must produce periodic modulation of the recirculating flow and periodic 
ingestion of the ambient fluid. The collar, depending on its length, also alters 
somewhat the initial condition, i.e. the details of the boundary layer a t  the exit of 
the pipe nozzle. The additional complicating feature of the collar is that  its lip does 
not constitute a sharp edge as is typical in shear-layer tone and jet tone phenomena. 
Studies with a sharper collar lip were discarded because of the additional complications 
of the cavity that had to be introduced within the collar in order to produce the 
sharp lip. 

I n  order to  substantiate further our explanation of the phenomenon discussed in 
the previous sections, i t  was considered necessary, even highly instructive, to carry 
out additional experiments with the whistler nozzle in the absence of the collar. If our 
explanation was correct, then i t  should be possible to  induce the whistler nozzle 
excitation in the absence of the collar by placing either a ring or a hole at the location 
of the collar lip. I n  either of these configurations, respectively called pipe-ring and 
pipe-hole, the recirculating region (which is present for the collar excitation) is 
eliminated, and there is entrainment of the ambient fluid right from the origin of the 
mixing layer. 

The whistler excitation with a ring and a hole was separately studied with a 2.54 em 
diameter pipe nozzle of length (i.e. Lp)  15.24 em. I n  each case, the traversing axis 
was carefully aligned with the pipe-nozzle axis. A precision cylinder which slides 
snugly into the nozzle as well as the ring or the hole, when in place, was used to check 
that the ring or the hole axis was aligned with the nozzle axis for all downstream 
traverses. Both the ring and the hole were so held that the impinging lip was far from 
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the support so that the support did not interfere with the phenomenon. The pipe 
nozzle, of thickness 0.3175 em, was machined square at  the downstream end, which 
thus forced the initial entrainment to be normal to the mainstream (figure 1 d )  rather 
than essentially parallel (figure 1 e ) .  Detailed data by Husain & Hussain (1979) showed 
that the two different initial entrainment patterns produce no difference in the time- 
average measures or instability details of the initial shear layer. In order to record 
the amplitude and frequency data, the hot wire was placed slightly downstream of 
the pipe nozzle (i.e. x = 0.2 em) and near the high-speed edge of the mixing layer, 
i.e. U I U ,  = 0.95. This location was chosen so that the sensor was away from the 
impingement point and yet captured the ‘shear-layer tone ’ in the axisymmetric 
mixing layer. The ring or the hole will in general induce ‘shear-layer tones’ in the 
axisymmetric configuration ; only when the shear-layer tone matches an organ-pipe 
mode of the pipe nozzle will a whistler tone be excited. Unless otherwise specified, 
‘shear tone’ in this section will denote those induced by the ring or the hole but not 
supported by the pipe nozzle. The latter will be denoted as ‘whistler tone’. The 
measurement probe was inserted through the ring or the hole (figures 1 b,  c) so that 
probe-induced shear-layer tone (see HZ) was avoided. In general, the peak amplitudes 
of the whistler excitation with the ring or the hole were lower than those with the 
collar. The audible tone was also louder with the collar, indicating that the collar 
accentuates the sound via the increased radiating surface and enhanced flow surging. 

The results of the whistler-excitation experiments in the modified configurations 
involving the ring and the hole are summarized in figures 13 and 14 for three different 
speeds: U, = 10 m s-l, 24 m s-l and 36 m s-l. Figure 13 (a) shows the frequency as 
a function of the downstream separation b of the hole or the ring from the pipe nozzle. 
Note that the frequencies fall in three ranges (f x 450 Hz, 1800 Hz, 2600 Hz) 
corresponding to the shear tone at the three speeds. However, the whistler-tone mode 
(f x 900 Hz) falls in a small range corresponding to the halfwave mode of the pipe 
nozzle. The non-dimensional frequency St,  (= fb/ U,) is shown in figure 13 ( b ) .  Figure 
13(c) shows the frequency data in terms of St,, (=  fOe/Ue) ,  where 0, is the exit 
momentum thickness of the boundary layer. 

The data in figure 13 show two trends of the frequency variation with b. For a given 
U,, as b is increased, the shear-tone frequency f, should progressively decrease. 
However, the organ-pipe mode frequency fp remaining unchanged for a given Lp, the 
nozzle would tend to limit the shear-tone frequency to an organ-pipe frequency. If 
f, is significantly different from fp, the variation off, with b will be monotonic. This 
is the case for U, = 10 m s-l. However, if fs were close to fp or its harmonics (which 
would correspond to higher modes like fullwave, one-and-a-halfwave, etc.), then the 
overall variation of the frequency would be like that of the shear tone. However there 
will be rangesof b over which the shear-tone frequency will ‘ lock in ’ with the organ-pipe 
tone. In  figure 13 the ‘ steplike ’ frequency variations are clear; the constant frequency 
ranges indicate ‘lock in’. In the non-dimensional coordinates shown in figure 13(c), 
note that the three distinct shear tone stages in figure 13 (a) collapse. The correspond- 
ing St,, range is 0.01-0.014, agreeing closely with the shear-layer tone data of HZ. 
Note that there are a total of four shear-tone stages, the number of stages increasing 
with U,. Note that the shear-tone stages in pipe-ring and pipe-hole configurations 
agree identically with the plane shear-layer-tone data of HZ, also shown in figure 13 ( b ) .  
It is quite impressive to find complete collapse of data in stage 2 (see figure 13b) for 
six different situations. 

The whistler tone value of St, increases linearly with b ;  the slope of this line 
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FIGURE 13. For caption see facing page. 

decreases with increasing speed. Correspondingly, the St,, values are constant for each 
U,, the constant value decreasing with increasing U,. 

Note that at U,  = 10 m s-l there is a clear shear tone with the ring but none with 
the hole. This is to be expected because the sharper impinging edge of the ring should 
produce a stronger feedback. For this reason, Uemin for the ring should be smaller 
than that for the hole; clearly, Uemin for the ring is less than 10 m s-l, while it is 
higher for the hole. There is no corresponding whistler tone at this speed because the 
ring-tone frequency is quite different from the corresponding whistler tone frequency. 
The bmin for the whistler tone with the ring is lower than that with the hole. This 
is again consistent with the expectation that the feedback from the ring is stronger 
and thus the tone should occur a t  a smaller b. Note that, at U, = 36 m s-l, there is 
even an earlier stage for the pipering than for the pipe-hole. 
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FIGURE 13. (a) Variation of frequency f with separation b for pipe-hole (PH) and pipe-ring (PR) 
configurations. The velocity (m s-l) and the corresponding configuration are *, 10, PR; A, 24, 
PR; 0, 36, PR; V, 24, PH; 0, 36 PH. (b )  St,  vs. b/B,; legend as in (a):  -*-.- , shear-layer 
tone (HZ) ; -- --, whistler tone with collar. (c) St, vs. b/8,; legend as in (a) .  The dotted straight 
lines denote St, oc b or St,, = const. lines. 

The shear-tone and whistler-tone amplitudes as functions of are shown in figure 
14(a) for U, = 24 m s-l and in figure 14(b) for U, = 36 m s-l. The shear-tone and 
whistler-tone stages occur fairly independently. At  U, = 24 m s-l, the whistler-tone 
amplitude starts being smaller than the shear tone, but reaches rapidly a peak value 
significantly exceeding the latter. The increasing stages of both shear and whistler 
tones have decreasing peak amplitudes, because the feedback is weaker at larger L,. 
The shear-tone and whistler-tone amplitudes are both higher for the ring, which is 
expected to produce a stronger feedback in comparison with that for the hole. Note 
that, at  Ue = 36 m s-l, the shear-tone and whistler-tone amplitudes are comparable. 
The whistler tone is considerably weaker at  other values of b and the corresponding 
amplitudes are thus not shown. 

3.10. Comparison of whistler tone with pipe-ring and pipe-hole tones 

The pipering and pipe-hole configurations were examined in order to obtain further 
support for the explanation proposed by us for the whistler-nozzle phenomenon. The 
data convincingly validate the explanation. Data in figure 12 (a) for the whistler tone 
are consistent with those in figure 13 (b)  for the pipe-ring and pipe-hole systems; note 
the linear variations of St, and Stb with L,/8, and b/8,, respectively. For 
U, = 36 m s-l, these two variations are essentially identical; see comparison shown 
in figure 13(b) .  There is also a good agreement in the St,, values; for example, for 
a value of L,/8, or 618, of about 160, the St,, values are essentially identical. 
Similarly, the Stb values for the fundamental for bj8, w 200 are essentially the same 
in figures 12 (a )  and 13 (b ) .  The departure from an exact linear variation in figure 12 (a) 
and from a constant value in figure 12(b) is different from those for pipe-ring and 
pipe-hole systems. These differences are to be expected. With increasing collar length 
L,, the effective length of the pipe also increases and hence the organ-pipe mode 
frequency decreases, while, in the case of the pipe-ring or pipe-hole, the organ-pipe 
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D (cm) L, (cm) U,  (m s-l) St, 

2.54 15.24 36 0.58 
30.48 36 0.33 
60.96 36 0.37 

30.48 60 0.51 
60.96 36 0.51 

3.81 5.08 127 0.52 
5.08 195 0.53 

10.16 86 0.52 
10.16 127 0.35 
15.24 86 0.38 
15.24 127 0.54 
15.24 195 0.43 
22.86 86 0.56 
30.48 86 0.6 
30.48 127 0.57 
30.48 195 0.42 

7.62 30.48 36 0.8 

TABLE 3. Approximate St, values of the dominant mode of whistler excitation determined from 
far-field jet noise spectra 

length and frequency remain unchanged. The comparatively worse collapse of the 
data with the collar is also to be expected. Since 8, varies continuously with the collar 
length (see HH), the data would perhaps collapse better if the actual 8, for each L, 
were used. This would be prohibitively time-consuming and cumbersome because of 
the interference of the collar. That is why the Be values used in figures 12 (a ,  b)  are 
the corresponding unexcited values. 

The amplitudes reported in figures 6 and 14 cannot be directly compared because 
the sensor locations for the whistler nozzle and for the pipe-ring or pipe-hole had 
to be different. However, the audible tone was much louder for the whistler nozzle 
than for the pipe-ring or pipe-hole. This is because of the direct effect of the collar 
which enhances the flow surging and provides additional sound-radiating surfaces. 

It should be emphasized that jet excitation is possible without the pipe-nozzle in 
ring-tone and hole-tone configurations if the initial condition is laminar. When 
initially turbulent, the pipe nozzle is essential for jet excitation. For initially 
turbulent shear layers a t  the exit of a contraction nozzle, self-excitation could not 
be induced. 

Finally, i t  should be emphasized that the #toe values for the full-wave mode of 
whistler excitation fall in the range 0.005M.012, representing the shear-layer tone 
(see HZ). However, the dominant mode (typically the half-wave mode) has a lower 
St,, (0.004-0.006). This paradox can be resolved by noting that the jet Strouhal 
number St, (=  fD/U,) corresponding to the dominant mode nearly corresponds to 
the ‘preferred mode ’ of the jet (Hussain & Zaman 1981). Table 3 presents approximate 
St, values of the dominant whistler excitation for D = 3.81 cm a t  high subsonic 
velocities; the excitation frequencies were measured from jet noise in the far field with 
a condenser microphone. Note that the dominant St,  values for all the cases (except 
for D = 7.62 em, L, = 30.48 at CJe = 36 m s-l) fall within 0.3-0.6. The case having 
a larger St, (i.e. 0.8) has a weaker coupling (indicated by comparatively lower 
amplitude). Data in this table suggest that the ‘preferred mode’ of the jet plays a 
controlling role also ; that is, the coupling of the two resonant mechanisms is tuned 
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to  the ‘preferred mode’ of the jet. In  essence, the whistler-nozzle phenomenon can 
be viewed as a coupling of three resonant mechanisms: the shear-layer tone, the 
organ-pipe resonance of the pipe nozzle and the ‘preferred mode’ of the jet. 
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